Cardiac

Cardiac Muscle and Circulation

1. Mammalian cardiac muscle consists of two kinds of fibers, both derived from embryonic muscle cells (myoblasts) - these are contractile fibers and pacemaker fibers. Pacemaker fibers - conduct electrical potentials through gap junctions between cells; Contractile fibers - short, compact, unlike skeletal muscle cells.

2. Biomechanics of human and other types of circulatory systems

  • Many invertebrates have an open circulatory system, emptying into a compartment called the hemocoel. (Eckert, Fig. 12-02a) (Eckert, Fig. 12-02b). As animals become larger and more complex, they require higher blood pressure to reach all parts of the body and more efficent delivery of oxygen and removal of carbon dioxide. Notice that the closed circulatory system of the cephalopod (squid, octopus) has two kinds of heart - the brachial or gill hearts deliver blood to the oxygen gathering organ, the gill, and the ventricle or systemic heart delivers the newly oxygenated blood coming from the gill to the rest of the body. (Eckert, Fig. 12-02c)

  • We see in the cephalopod that one heart chamber is used to pump blood to the gills and a second to pump blood back to the rest of the body - Two single chamber hearts. This is a very sophisticated system, unlike the heart of a typical fish, in which one heart, even if it is of two chambers, pumps blood to the gills. From the gills, the blood doesn't get a boost in pressure before going to the tissues. This lack of efficiency may have prevented fish from developing homeothermy. (Eckert, Fig. 12-16a) In the African Lungfish, that can survive in either water or air, the swim bladder, normally used to control buoyancy in fish, is modified into a lung-like organ. (Eckert, Fig. 12-16c) Notice how the lung fish almost separates the arterial and venous circulation as a result of the structure of the main, multichambered heart - the oxygenated blood (red) and unoxygenated blood (blue) going to the gills don't mix very much as blood flows through the heart.

  • The four-chambered heart of mammals totally separates the the blood flow to the body and to the lungs. (Eckert, Fig. 12-3) (Eckert, Fig. 12-4)

  • The four-chambered heart of birds is similar to that of mammals but can have multiple pulmonary veins.

  • The three-chambered heart of amphibians and reptiles has two atria but only one ventricle. an intermediate pattern between fish and mammal. Frogs have one large ventricle but manage to keep circulation of oxygenated and unoxygenated blood somewhat separate due to flow patterns. (Eckert, Fig. 12-17) Some lizards have a separation part way up the ventricle. (Eckert, Fig. 12-18) Figures in Eckert's book don't make the separation of flow patterns clear so don't spend too much time worrying about those diagrams.

All text and images, not attributed to others, including course examinations and sample questions, are Copyright, 2006, Thomas J. Herbert and may not be used for any commercial purpose without the express written permission of Thomas J. Herbert.